
BENCHMARK

Costs and Benefits of .NET Application Migration
to the Cloud v1.1

An Updated Guide to Cloud-Based Modernization of .NET
Applications
NED BELLAVANCE | NOV 3, 2020 - 6:55 AM CST

TOPIC: CLOUD INFRASTRUCTURE

SPONSORED BY

CREDIT: ARTYSTARTY

https://gigaom.com/analyst/bellavance-ned/
https://gigaom.com/sponsor/microsoft/
https://gigaom.com/sponsor/microsoft/

Costs and Benefits of .NET Application Migration
to the Cloud
An Updated Guide to Cloud-Based Modernization of .NET
Applications

TABLE OF CONTENTS

Summary1

What’s Driving Application Modernization?2

Options and Benefits for Application Modernization3

Comparing PaaS Offerings For Migration4

Field Test Findings, Migration Benefits and TCO Analysis5

Conclusion6

Appendix7

About Ned Bellavance8

About GigaOm9

Copyright10

Costs and Benefits of .NET Application Migration to the Cloud v1.1 2

1. Summary

It’s hard to overstate the massive impact that cloud computing and services have had across industries
of every type over the past several years. New and updated capabilities are emerging constantly,
enabling businesses to augment and transform their existing applications to increase customer
engagement, streamline operations, and lower costs. It’s the era of digital transformation, and
companies must innovate and accelerate to compete in this dynamic environment. If only it were that
simple.

All that breakneck innovation poses a serious challenge, as organizations must balance doing the next
new thing against their hefty investments in existing systems. Technology strategists face a complex
series of trade-offs around a simple question: Do you build new applications, or modernize existing
systems and migrate them to more scalable, cloud-based platforms? To answer that, you need to
understand the return on investment that comes from modernizing and migrating applications to the
cloud.

In this report, we consider this question head-on, assessing the benefits and costs of application
migration. Moving from theory to practice, we ran a field test to walk through a migration scenario and
evaluate the costs, performance, and benefits of migration. We learned that:

• Significant cost benefits can be gained from application migration to the cloud from on-premises
infrastructure.

• Traditional .NET applications can benefit from such a migration without refactoring underlying code.

• The Microsoft Azure solution offered potential total cost of ownership (TCO) savings of up to 54%
over running on-premises and 30% over running on AWS.

• Streamlined operations, simplified administration, and proximity to advanced cloud services are
additional benefits.

• It is critical to assess traditional applications for migration to the cloud and balance the
requirements of the application with the potential advantages of the cloud.

Looking specifically at .NET applications, our field test study enabled us to assess different approaches
for migration and weigh the pros and cons of each. We determined that moving to Microsoft Azure has
a measurable TCO advantage over Amazon Web Services, and that Azure offers additional benefits
beyond TCO.

Overall, we learned that a cloud migration of any form frees up considerable time and resources to
work on tasks that drive value instead of just keeping the lights on. As a result, we can say that
modernization may be viewed as an imperative element of a forward-thinking application strategy. The
best starting point is to evaluate existing applications and determine the best migration strategy for
each, based on priority.

Costs and Benefits of .NET Application Migration to the Cloud v1.1 3

2. What’s Driving Application Modernization?

Digital transformation – the adoption of leading-edge technologies to drive business value and
customer success – is seen by most organizations as a critical element of success, a reality illuminated
by Covid-19 and its consequences. Recent GigaOm research conducted on behalf of Microsoft shows
that while 37% of enterprise organizations have already treated their digital transformation needs, an
additional 48% are still addressing them. (Figure 1)

Figure 1. Digital Transformation as a Driver of Success

This need to use technology as a value driver pervades every aspect of business today, but no large
organization is operating a greenfield operation with carte blanche to innovate and accelerate. They
need to work with, through, and around existing systems and applications. These so-called called
legacy or heritage applications live in on-premises data centers and are the workhorse of most
organizations, responsible for a large portion of their revenue generation.

And there is the rub. Legacy systems are a core asset that drive both revenue and value and ensure
the smooth operation of the business. While maintaining these systems and infrastructure can preserve
value, it generally won’t add to it, and that’s a problem for enterprises looking to transform. These
legacy systems are a source of friction and bottlenecks. For example, enterprise organizations today
have many thousands of traditional ASP.NET applications running on-premises, delivering value to their
owners, but consuming valuable resources, instead of driving innovation.

Rationalization has long been the dream in such environments, but the reality is that rewriting
applications from scratch is rarely an option. As businesses assess their portfolio of applications, there

Costs and Benefits of .NET Application Migration to the Cloud v1.1 4

is a question of whether it makes sense to modernize, rather than replace, an application. Clearly there
needs to be some tangible benefit, or the effort to transform the application would be wasted. We
consider options, benefits and costs in the section below.

Costs and Benefits of .NET Application Migration to the Cloud v1.1 5

3. Options and Benefits for Application Modernization

Among the options for application modernization, there is a spectrum running from a full rewrite of the
application to a simple lift-and-shift of the application to a new platform. Terminology may vary, but we
can focus on the following options, depicted in Figure 2:

• Rehost – Virtual Machines running on on-premises servers are “lift-and-shifted” to cloud-based
servers.

• Replatform – Application logic (for example, written in ASP.NET) is migrated from an on-premises
platform to cloud-based PaaS (Platform as a Service).

• Refactor – Existing code is reviewed and restructured to take better advantage of cloud-based
models and services.

• Rewrite – An on-premises application is replaced by a cloud-native version that delivers similar, if
not enhanced functionality.

Figure 2. Methods of Application Modernization

Completely rewriting or refactoring a traditional application to be cloud native is a complex and time-
consuming process. While there may be long-term benefits to undertaking such a project, in the short
term, costs will be high and productivity may suffer. Many organizations will choose to forgo a
complete rewrite of a traditional application in favor of simply migrating the virtual machines hosting
the application to the cloud. These migrations are the simplest and often the fastest, but they cause
the organization to miss out on many of the benefits of moving to the public cloud.

Costs and Benefits of .NET Application Migration to the Cloud v1.1 6

Table 1. Benefits and Challenges of Modernization Approaches

As we can see in Table 1, replatforming an application, aka “move-and-improve,” represents a happy
medium point between the two extremes of rewriting and lift-and-shift. In a replatforming migration, the
application components are moved to a Platform-as-a-Service offering like Microsoft Azure App
Service or AWS Elastic Beanstalk. Companies get the benefit of having the cloud provider manage the
underlying infrastructure and software of the platform, while only needing to make minor changes to
their applications.

Alongside potential cost reductions, benefits of replatforming include:

• Increased productivity

• Enhanced features

• Access to innovation

All of these benefits respond to the need for greater agility in support of digital transformation. We
cover each of them below, with illustrations from the Microsoft Azure portfolio.

Increased Productivity

Migrating an application from an on-premises deployment to a fully managed service in the public
cloud can increase productivity in the following distinct ways:

Costs and Benefits of .NET Application Migration to the Cloud v1.1 7

• Reduce administrative overhead: Adopting a managed platform helps optimize costs and lowers
administrative overhead associated with the application. The operations team no longer needs to
patch operating systems, manually scale for capacity, or manage underlying database engines.

• Improve operational efficiency: Reduced overhead means the operations team is freed up to focus
on other aspects of the system, working to improve operational efficiency and reduce downtime.
This moves operations onto the front foot, enabling teams to operate more confidently.

• Speed application and feature delivery: Rather than just keeping the lights on, the ultimate goal of
operations is to act as an enabler of innovation, empowering development teams to deliver new
applications and features faster by reducing deployment times and enabling access to leading-
edge services.

Providers like Microsoft Azure provide rich monitoring, reporting, and analytical tools that will assist the
operations team in diagnosing potential issues, finding the root cause, and verifying that a solution was
effective. Both Azure App Service and Azure SQL Database are able to scale dynamically and
automatically to meet customer needs and application demand. Using these capabilities, operations
teams no longer have to spend time manually spinning up new instances or vertically scaling their
database server to keep pace with demand. They also do not need to plan for capacity in their data
centers to accommodate peak load and growth. The cloud can scale to meet bursts of activity, and
then contract when demand subsides.

Cloud providers also offer the ability to automate the provisioning of additional operational
environments for development, quality assurance, staging, and more. The operations team no longer
needs to spend weeks creating an additional environment, and they can use infrastructure as code to
ensure the various operational environments stay consistent.

Enhanced Features

Beyond operational efficiency, cloud providers offer many features that enhance both the operational
and development experience. For example, the Azure App Service platform enables developers to
take advantage of deployment slots on a web application. Each deployment slot runs its own version of
the application, with an independent namespace. Traffic can be distributed across multiple slots for
canary deployments, blue/green testing, or a regular cutover between staging and production.
Because there is also deep integration between Visual Studio and Azure App Service, additional
capabilities, such as live-site debugging, are unlocked for the developer.

Azure App Service also includes integration with GitHub, Azure Repos, and BitBucket to enable
continuous deployment. New commits to a specific branch in a code repository will trigger a build
process and deployment of the new code to Azure App Service. The continuous deployment feature
can be integrated with Azure Pipelines to ensure that proper code coverage and testing is performed
before a new build is deployed.

Backup and recovery of application data and replication to a separate region is simplified when using

Costs and Benefits of .NET Application Migration to the Cloud v1.1 8

the cloud. Azure SQL Database can easily replicate data to a designed partner region. A scaled down
instance of Azure App Service could be running in the same partner region, with the whole solution
placed behind a Traffic Manager to make failover a relatively simple process. Since capacity can be
allocated on demand, it is no longer necessary to maintain a disaster recovery environment with
matching capacity at all times.

Access to Innovation

Migrating on-premises applications places them directly adjacent to the rapid innovation happening in
the cloud today. New services and features are constantly being introduced in clouds like Microsoft
Azure. In some cases, portions of the application could be updated to use a different service, like
moving from traditional Microsoft SQL Server to Azure SQL Database serverless to handle frequent
scaling and unpredictable use. In other cases, an application could be enhanced by consuming
another service, like adding a chat bot to an existing application using Azure Bot Service, or adding
voice commands with Azure Cognitive Services.

By moving an application to the cloud, it will have direct access to all of these services and more.
Additionally, developers and operations managers are freed up to investigate and experiment with
these services rather than simply keeping the lights on.

Costs and Benefits of .NET Application Migration to the Cloud v1.1 9

4. Comparing PaaS Offerings For Migration

While newer applications might be developed in a cloud native manner, traditional ASP.NET
applications were written prior to advances like .NET Core and microservice architectures (Figure 3). It
is not simple or cost effective to rewrite these applications to support a new programming paradigm,
but that does not mean they cannot take advantage of what the cloud has to offer.

Figure 3. Traditional and Cloud-Native Architectures

Traditional ASP.NET applications backed by Microsoft SQL Server can be moved to the Platform as a
Service (PaaS) offerings on the major public cloud providers. Microsoft offers Azure App Service and
Azure SQL Database to provide the web front-end and database backend required by most
applications. The underlying systems are managed by Microsoft, reducing the operational overhead
associated with managing and maintaining web and database servers.

Amazon Web Services has some similar capabilities in its Elastic Beanstalk service, which is capable of
generating environments that include an autoscaling group of EC2 instances and a deployment of their
Relational Database Service. Both AWS and Microsoft are providing managed virtual machines running
Windows Server and IIS, mirroring the current deployment environment of traditional ASP.NET
applications. Microsoft’s PaaS solution abstracts most of the underlying infrastructure and maintenance
details while AWS’ offering exposes these to the customer.

Costs and Benefits of .NET Application Migration to the Cloud v1.1 10

The similarities of these platforms with the current deployment of ASP.NET applications on-premises
makes the migration process simple and predictable, while providing benefits over a lift-and-shift
migration that simply uses Infrastructure as a Service (IaaS) components. Essentially, without
refactoring or rewriting code, traditional applications can be moved seamlessly to a PaaS deployment
in the cloud. At least, that is the theory. To test that theory, GigaOm chose to do a field test migration of
an ASP.NET application from a traditional on-premises environment to both Microsoft Azure and AWS.

In order to understand the migration process and gain insight into available solution options, GigaOm
performed a field test based on the scenario of migrating a web-based application from an on-
premises environment to the cloud. The field test compared three environments:

1. Windows VMs running on VMware

2. Microsoft Azure using Azure App Service and Azure SQL Database

3. AWS using Elastic Beanstalk, EC2, and Amazon RDS

The application deployed was the Parts Unlimited web store, an ASP.NET application using IIS for a
web server and Microsoft SQL Server for the backend, as shown in Figure 4. The web store has an
inventory of items that can be searched and purchased by registered users. The application was
installed in each environment and assessed for performance, ease of migration, and additional features
available from each cloud provider.

Costs and Benefits of .NET Application Migration to the Cloud v1.1 11

https://github.com/microsoft/PartsUnlimited/tree/aspnet45

Figure 4. The Parts Unlimited Application Architecture

We look at the top-level results of the field test, and their ramifications, below. Further detail on the
field test is provided in the appendix.

Costs and Benefits of .NET Application Migration to the Cloud v1.1 12

5. Field Test Findings, Migration Benefits and TCO Analysis

As part of this study, we were able to compare and contrast two of the leading solutions on the market
– Amazon AWS and Microsoft Azure - with the option of leaving the application in place. Our top-level
findings across ease of migration, performance, and TCO were as follows:

The migration process from on-premises to both Azure and AWS was relatively straightforward,
with Azure leading the way. In both cases, the SQL database was backed up and restored to the
target migration environment, then the application code was deployed using Visual Studio. The
process of code deployment was simpler on Microsoft Azure than AWS due to the tightly integrated
nature of Visual Studio and Azure services. Installing the AWS Toolkit for Visual Studio made the
process simpler, but it still was not as seamless as the Azure experience.

One particular aspect was the configuration of the application front end to connect to the database.
Visual Studio was able to leverage the built-in functionality of the App Service configuration properties
to update the database connection string. The AWS Elastic Beanstalk deployment required the
definition of a Web.config transform file to handle the database connection. This is one of a few
instances where it was clear that Azure App Service is more of a guided experience than AWS Elastic
Beanstalk.

The performance of resulting application deployments was roughly the same. This result was
expected because care was taken to select similar virtual machine sizes, hardware generations, and
software. More information on the specifics of the hardware can be found in the appendix.

The intention of the test was to show that performance of a migrated application would be equivalent
to or better than the on-premises instance. Once the application has been migrated, there are many
updates that could be employed to improve performance, including the addition of a content-delivery
network (CDN), dynamic scaling of resources, upgrading to HTTP/2, and adding a local cache to the
web servers.

The Microsoft Azure solution offered savings of up to 54% compared to on-premises and 30%
compared to AWS – There is significant savings to be had by migrating the application to Microsoft
Azure. Our benchmark showed that on-premises was the most expensive option. Running in AWS was
more expensive than Microsoft Azure as well and did not allow the reuse of existing Microsoft
licensing. Potentially, additional savings could be had by introducing dynamic scaling to the
environment to reduce consumption during periods of lower demand. More detail on the TCO
calculation and price performance considerations can be found below.

TCO Analysis

Calculating a true TCO for application modernization or migration is difficult because of variable
qualitative aspects, such as administrative overhead and operational headcount. For the analysis of
each environment, we therefore assumed that the headcount remains consistent, and we did not take

Costs and Benefits of .NET Application Migration to the Cloud v1.1 13

into consideration the larger data center or cloud deployment that might be part of an organization
considering the move. Instead we looked at the cost of running each environment for three years.

Hosting considerations also need to be taken into account. Migrating the entire application from an on-
premises environment would likely result in the removal of one virtualization host. Therefore, for the
on-premises environment, we included the cost of two physical hosts, four vSphere licenses for the
CPUs, and an estimate for the power and cooling consumed by those hosts.

In terms of results, Microsoft Azure with Azure Hybrid Benefit (AHB) licensing had the lowest overall
cost, saving an estimated 54% over the on-premises deployment and 30% over AWS.

AHB licensing allows existing Windows Server and SQL Server licenses to be applied to Azure virtual
machines and Azure SQL Database instances. The estimated cost of a SQL Standard license is
$10,800, based on official pricing published in June 2020. Assuming a migration scenario with an
existing SQL Standard License being recouped for use in Microsoft Azure, the Azure SQL Database
cost would be reduced from $18,000 to $7,200, which would reduce the total Microsoft Azure cost to
$31,088. The use of existing SQL licenses is not an option on Amazon RDS. The addition of AHB
creates a compelling savings of 30% over AWS.

These relative costs are shown in Table 2. Note that we do not incorporate dynamic scalability and
bundled features, which would also have a bearing. In addition, the pricing calculation for Azure uses
reserved capacity pricing for App Service and Azure SQL and the US East region for hosting, while
AWS uses reserved instance pricing and the us-east-1 region for hosting. More information regarding
the configuration and calculation can be found in the appendix.

Costs and Benefits of .NET Application Migration to the Cloud v1.1 14

Table 2. Estimated Cost by Environment

There are other, less quantitative aspects that we believe give Microsoft Azure an edge when it comes
to calculating a true TCO figure. One important aspect is operational efficiency and administrative
burden. Each approach offers a different combination of benefits and costs:

• Azure App Service and Azure SQL Database are designed to be true, managed platforms,
abstracting the underlying components that compose each service. To a certain extent, this limits
the amount of customization and control that a customer has over the web service or database. The
tradeoff is that upgrades, patching, and maintenance are largely handled by Microsoft.

• Amazon Elastic Beanstalk acts more like an automation platform to provision an environment than
a fully managed offering. The base constructs used by Elastic Beanstalk - EC2, RDS, ALB - are not
abstracted from the customer, providing a large range of flexibility. The tradeoff for AWS customers
is a potential for greater administrative load that is hardly any different from consuming
Infrastructure as a Service (IaaS). In fact, a more apt comparison might be Azure Virtual Machine
Scale Sets, Application Gateway, and Azure SQL Managed Instances.

• On-premises deployment does not offer any form of managed services. It is up to the existing
operations teams to continue to support the application. Any migration to the cloud should be
considered in terms of the additional administrative load and complexity introduced by a new
environment, compared to the lower cost and operational efficiency that come from using a
managed service.

Costs and Benefits of .NET Application Migration to the Cloud v1.1 15

Finally, we note that some applications may require the additional flexibility provided by an IaaS type
solution. The Parts Unlimited application used in our benchmarking test was not one of those, and
based on Microsoft’s intense focus supporting traditional ASP.NET, most applications should work on
Azure App Service.

Price/Performance Considerations

During the benchmarking process, we ran an average of 15,000 sessions per hour through each
environment, or about 11 million sessions per month. None of the web servers exceeded 25%
utilization, meaning there was ample headroom. By reducing the number of web servers to two with an
autoscale policy to add instances when the CPU reaches 70%, we can further reduce the cost of the
environment without sacrificing performance.

Table 3 illustrates the cost per month for each environment and the cost per 10K sessions, including
where the web servers have been scaled back to two instead of four. Figure 5 compares the cost per
10K sessions at the 4 VM and 2 VM levels.

Table 3. Cost per Month for Each Environment (lower is better)

Costs and Benefits of .NET Application Migration to the Cloud v1.1 16

Figure 5. Cost per 10,000 Sessions for Each Environment (lower is better)

Whether the application is running on-premises or on Microsoft Azure, the same SQL Standard licenses
would be necessary. If the application is moved to AWS, the license cannot be migrated and instead
the license cost is rolled into RDS. The Microsoft Azure with AHB environment therefore represents a
cost savings of 30% over AWS at 4 VMs and a savings of 42% at 2 VMs.

Costs and Benefits of .NET Application Migration to the Cloud v1.1 17

6. Conclusion

Organizations looking to transform can see application migration as a clear opportunity to reduce on-
premises legacy workloads, and benefit from the advantages of cloud-based models. As illustrated by
the field test for .NET applications, application migration to a hosted platform environment can be
straightforward and offers significant benefits over on-premises solutions, both in tangible (cost/
performance) and less tangible (access to innovation) terms.

We would recommend that organizations looking to modernize applications in general, and .NET
applications in particular, consider the following:

• Existing legacy and heritage applications can be run at a significantly lower cost using a cloud-
based platform, freeing resources and unlocking the potential for new application delivery.

• Replatforming applications is minimally disruptive and can be simple to test, enabling migration to
be piloted, risks to be assessed, and costs to be evaluated prior to full deployment.

• Fully managed platforms provide the highest level of simplicity and lowest administrative burden
compared to in-house infrastructure and platform stacks.

• For .NET applications, it is easy to get started today by taking advantage of Microsoft’s App Service
and Database Migration Assistance tools, which help automate migration to the Azure App Service
and Azure SQL Database.

To get started down a path to migration, we recommend taking the following actions:

• Assessment: Categorize existing applications by revenue generation and cost to maintain. While
there may be hundreds or thousands of applications to treat, consider working on applications
according to a specific group — for example by department, application, or data type.

• Prioritization: Identify applications that make good migration candidates, according to criteria such
as existing cost of maintenance, risk of migration, and opportunity created — for example to unlock
new functionality.

• Evaluation: You can map application dependencies across data sources, services, and
infrastructure to help identify group migration candidates.

• Validation: Perform test migrations to validate functionality and performance, and to build
experience around target environments, for example, in terms of what operational management
dashboards are available.

Overall, the opportunity to move applications to the cloud does not have to be a seen as an all-or-
nothing deal that requires either moving existing virtual machines or partially or completely rewriting
applications. By considering replatforming as an approach, organizations can derive benefits rapidly
without cost and risk, and unlock new opportunities for innovation and transformation.
Costs and Benefits of .NET Application Migration to the Cloud v1.1 18

https://appmigration.microsoft.com/
https://datamigration.microsoft.com/

7. Appendix

Environment Summary

The on-premises environment had four web servers running Windows Server 2016 and a single
database server running Windows Server 2016 and SQL Server 2017. The load balancer was a single
virtual machine running Ubuntu LTS 18.04 with Nginx installed. Figure 6 shows the architecture.

Figure 6. The On-Premises Benchmark Environment

The Microsoft Azure environment shown in Figure 7 used the Azure App Service with a Premium V3
App Service Plan, configured to run a minimum of four instances. Database services were provided by
a Gen5 instance of Azure SQL Database with four vCores. Load balancing services are included as part
of the Azure App Service.

Costs and Benefits of .NET Application Migration to the Cloud v1.1 19

Figure 7. The Microsoft Azure Benchmark Environment

The AWS environment shown in Figure 8 used m5d.large EC2 instances provisioned by Elastic
Beanstalk. The instances were part of an autoscale group with a minimum of four instances. Database
services were provided by Amazon RDS and provisioned by Elastic Beanstalk. The RDS instance was a
db.m5.xlarge size running Microsoft SQL Server 2017. Load balancing services were supported by an
Application Load Balancer provisioned by Elastic Beanstalk.

Costs and Benefits of .NET Application Migration to the Cloud v1.1 20

Figure 8. The AWS Benchmark Environment

Testing Configuration

The performance for each instance of the application was assessed by running three different load
tests against the application. The Home Page Load test simply loaded the home page of the
application in a browser window. The Item Search test entered a search term on the home page and
clicked on the first result. The Item Purchase test logged a user into the site and walked through the
purchase of an item from the site. Each test was run for 60 minutes, with a sustained load of concurrent
users accessing the site. More details on the tests can be found later in this appendix.

The two measures being presented below are the total number of successful sessions executed during
each test, and the average duration of each test. The Azure environment led the way in successful
sessions completed, especially on the Item Purchase testing, as shown in Figure 9.

Costs and Benefits of .NET Application Migration to the Cloud v1.1 21

Figure 9. Total Sessions Across Different Load Tests (higher is better)

The AWS environment had the lowest average duration for each test, with Azure demonstrating
comparable numbers. Figure 10 shows the results.

Costs and Benefits of .NET Application Migration to the Cloud v1.1 22

Figure 10. Average Duration Across Load Tests (lower is better)

Overall, the performance of all the environments was remarkably consistent, with both cloud services
showing better performance over the on-premises environment. This makes sense because of the
similar hardware and software being used for each environment.

Scenario Configuration

The goal of the simulation was to migrate an existing ASP.NET MVC application from a traditional on-
premises deployment to Microsoft Azure and Amazon Web Services. Three environments were built
out to test the migration process and performance of the application, Microsoft Azure, Amazon Web
Services, and VMware vSphere running on bare metal servers supplied by Packet. To keep the
comparison valid, we attempted to make each environment as equivalent to the others as possible. In
some cases, the same CPU or exact hardware and software specifications were not available in each
environment. For instance, Azure SQL Database doesn’t use the same exact software as Microsoft SQL
Server. Where there is a divergence, we tried to use the closest equivalent.

Application

The application is a version of the Parts Unlimited application, running ASP.NET 4.7 with MVC. The
application uses an IIS front-end and a Microsoft SQL Server backend. The version of the Parts
Unlimited application can be found on GitHub under the aspnet45 branch.

Costs and Benefits of .NET Application Migration to the Cloud v1.1 23

https://github.com/microsoft/PartsUnlimited/tree/aspnet45

The application was loaded and configured using Visual Studio 2019 Community Edition. For the
Microsoft Azure environment, the application was published directly from Visual Studio using the built-
in Azure deployment options. The application was deployed to a pre-existing Azure Web App and
Azure SQL Database, instead of creating one through the wizard. Changes to the database connection
information were handled by the wizard.

The AWS Toolkit for Visual Studio 2019 extension was installed to simplify deployment of the
application to Elastic Beanstalk. The application was published to a pre-existing Elastic Beanstalk
environment, instead of creating one through the wizard. Changes to the database connection
information were handled through a web transform file.

For the On-premises environment, the application was published to a local folder on the desktop and
then copied to the web servers manually. Changes to the database connection information were
handled through IIS configuration changes to the Web.config file.

It should be noted that in a true production workflow, publishing a new version of the application would
likely be handled by an automated deployment process as part of a CI/CD pipeline backed by a source
code repository. For the purposes of this test, it was more important to get the application deployed
simply than to build out a full deployment pipeline. We will discuss the various deployment scenarios
later on.

On-Premises

To simulate an on-premises environment, we chose to create a VMware installation running on bare-
metal servers supplied by Packet. The environment was composed of two bare-metal servers running
in Packet’s Dallas-Fort Worth region. Note that for CPU configuration that Skylake (2015) is one of four
architectures in play, including Cascade Lake (2019), Broadwell (2014), and Haswell (2013). Wikipedia
provides an overview of Intel CPU architectures. The specifications for the servers are listed here:

• Size: m2.xlarge.x86

• CPU: 2x Intel Scalable Gold 5120 (Skylake) 28-Core @ 2.2GHz

• RAM: 384GB

• Disk: 3.2 TB NVMe

• Network: 2 X 10Gbps

• OS: ESXi 6.5

On top of the ESXi hosts, virtual machines were created for the web servers, database server, vCenter
server, routing VM, and a load balancer. The specifications for each server are listed in Table 4:

Costs and Benefits of .NET Application Migration to the Cloud v1.1 24

https://en.wikipedia.org/wiki/List_of_Intel_CPU_microarchitectures

Table 4. On-Premises Server Specifications

The VM performed routing between the private address space of the internal virtual machine network
and the public IP address space provided by Packet.

The database server had Windows SQL Server 2016 Standard installed.

There are four web servers with IIS and the .NET Framework 4.7 installed. The physical hosts are
capable of supporting up to 30 web servers, although it would be a manual process to scale them.

The load balancer VM was using Nginx 1.18 as a load-balancer for the web server. Nginx was
configured to use the ip-hash load balancing algorithm. Doing so ensures that each client is directed to
the same web server.

Microsoft Azure

The Microsoft Azure environment made use of Azure App Service and Azure SQL Database to host the
application running in the East US region. The App Service Plan used for the App Service deployment
used the Premium 1 v3 SKU. The virtual machines backing the App Service plan were the D2v4 Azure
VM SKU running Windows Server 2016. The minimum number of instances was set to 4, with an
autoscale rule to add instances when the average CPU exceeded 70%. There is a maximum of 30
instances for a Web Application.

Costs and Benefits of .NET Application Migration to the Cloud v1.1 25

The D2v4 SKU has 2 vCPU, 8GB of RAM, and 250GB of remote file storage. The CPU used by the Dv4
series of Azure VMs is Intel Xeon Platinum 8272CL (Cascade Lake).

The Azure SQL Database server was created using hardware generation Gen5 with 4 vCores and
20GB of RAM. Gen5 hardware uses an Intel Broadwell or Skylake processor 5.1GB of provisioned
memory per vCore.

The Azure App Service does not provide direct access to a load balancing mechanism for apps
deployed on the platform. Within the general settings it is possible to control Application Request
Routing (ARR) affinity. For the deployment we set ARR affinity to “enabled.”

Amazon Web Services

The Amazon Web Services environment made use of the Elastic Beanstalk Service and Relational
Database Service (RDS) to host the application running in the us-east-1 (N. Virginia) region. The Elastic
Beanstalk environment used the .NET on Windows Server platform with IIS on Windows Server 2016.

The target group behind the platform used m5d.large size EC2 instances with an Intel Xeon Platinum
from the Skylake-SP or Cascade Lake generation 2 vCPUs, 8GB of RAM, and 250GB of EBS storage.
The group was set to have a minimum of 4 instances, with an autoscale rule to add instances when the
average CPU exceeded 70%. The maximum number of instances is a function of the quota for EC2
instances for the AWS region and account. The default limit is 64 vCPUs for M-family instances, which
would be the equivalent of 32 m5d.large instances. For parity with the other environments, a limit of 30
instances was set for the target group.

The RDS instance was created using the db.m5.xlarge instance size. The db.m5.xlarge instance uses
the Skylake-SP or Cascade Lake processor with 4 vCPUs and 16GB of RAM. The instance was
configured with 250GB of EBS SSD storage.

The load balancer for the Elastic Beanstalk Service was an Application Load Balancer (ALB) with
session persistence enabled and a round-robin load balancing approach.

Environment Comparison

Table 5. Web Server and Database Components Across Three Environments

Costs and Benefits of .NET Application Migration to the Cloud v1.1 26

The largest variation among the environments is storage and CPU. For the web servers, the Azure App
Service instances are provisioned with a non-configurable 250 GB of remote storage, while the AWS
EC2 m5d.large instances default to 30GB, and VMware suggests 40GB for Windows Server 2016.
Additional storage was added to the m5d.large instances for parity. When trying to match hardware
across the platforms, the m5 family came the closest in terms of memory and processor.

On the database side, the minimum for the RDS instance size db.m5.xlarge is 200 GB. Azure SQL
Database has a configurable amount of storage, as does the VMware implementation.

Since storage is not a constraining factor for the Parts Unlimited application, we made sure all
environments had more than adequate storage for the web application and database. The more
important factor for storage is having a consistent media type. Azure and AWS are using SSD storage
and the on-premises environment is using NVMe. The difference in media type for the on-premises
environment may result in slightly better performance, but the net impact should be negligible.

The more important factors are number and type of CPU cores and quantity of RAM, which have been
kept nearly identical across the environments (shown in Table 6). Likewise, the CPU generations were
kept as similar as possible as well.

Table 6. Type of CPU Cores Used in Each Environment

By keeping as many factors as possible the same, the expectation is that the performance of the
application should be similar across all three environments.

Testing Configuration

Three different tests were performed across the three environments to check on their performance in
common usage scenarios. The load testing was performed using LoadView by Dotcom-Monitor.
LoadView is a hosted solution capable of generating web page loads from multiple AWS regions

Costs and Benefits of .NET Application Migration to the Cloud v1.1 27

around the world. Each test is composed of multiple load injector nodes, each running one or more
instances of the test. LoadView assesses each test to determine the number of test instances
supported by a single node.

It’s important to note that the tests are running from within AWS and one of the environments being
tested is also running in AWS. Specifically, the AWS environment is running in the us-east-1 (N. Virginia)
region. The testing environment used a mix of four different AWS regions:

• 40% - Amazon US East (Ohio)

• 40% - Amazon US West (N. California)

• 10% - Amazon EU (London)

• 10% - Amazon Asia Pacific (Tokyo)

The arrangement may have led to slightly better performance numbers for the AWS environment,
although the data do not seem to support that.

The tests performed by LoadView can be a simple HTTP request, a complete page load, or a multi-step
website interaction. For the performance test, we chose to go with three scenarios:

• Homepage load: Access the main page of the application and evaluate how long it takes to load.

• Item search: Access the main page of the application and search for an item using the search box.
Click on the first result from the search.

• Item purchase: Access the main page of the application and log in as a customer. Select an item
category and click on the first item in the category. Add the item to the shopping cart and then
purchase the item.

These tests are not leveraging an API or REST call. Each test simulates the actions in a browser –
Chrome in this case – and measures the time it takes to complete each action, as well as the overall
time of the test.

Testing Results

Home Page Load

The Home Page Load test was a simple test to load the home page of the application (picture below):

The load type was a step curve performed over one hour, with a gradual increase in the number of
users for the first 10 minutes, and then a sustained load for the following 50 minutes. The test started

Costs and Benefits of .NET Application Migration to the Cloud v1.1 28

with 10 users, increased by 10 users for 10 minutes and then held steady at 110 users for 50 minutes.

The test was distributed across four AWS regions with the following allocations and number of load
injectors, as shown in Table 7:

Table 7. Home Page Load Test Specifications

Each environment was subjected to the same test with the same parameters. As noted above, the AWS
environment is running in the same region as 40% of the configured load. We should expect that
response times will be a little lower for those tests due to the lower latency of the network.

Table 8 shows the results of the Home Page Load test against all three environments.

Costs and Benefits of .NET Application Migration to the Cloud v1.1 29

Table 8. Home Page Load Test Results

Each environment handled a similar number of sessions, with Azure processing the most sessions. The
average duration of the session for each environment was around six seconds, with Azure showing the
most consistent performance of the three.

Item Search

The Item Search test was meant to simulate a user loading the website and searching for a product.
The test loaded the home page, typed ‘battery’ in the search box, executed the search, and clicked on
the first result.

The load type was a step curve performed over one hour, with a gradual increase in the number of
users for the first 10 minutes, and then a sustained load for the following 50 minutes. The test started
with 5 users, increased by 5 users for 10 minutes and then held steady at 55 users for 50 minutes.

The test was distributed across four AWS regions with the following allocations and number of load
injectors, indicated in Table 9:

Costs and Benefits of .NET Application Migration to the Cloud v1.1 30

Table 9. Item Search Test Specifications

Each environment was subjected to the same test with the same parameters. Table 10 shows the
results of the Item Search test against all three environments.

Costs and Benefits of .NET Application Migration to the Cloud v1.1 31

Table 10. Item Search Test Results

In this case, the Azure environment was able to process the most sessions. The Azure and AWS
environments had roughly the same average duration, with the on-premises duration being the biggest
outlier. Once again, the Azure environment had the most consistent performance with the lowest
standard deviation.

Item Purchase

The Item Purchase test was meant to simulate a user purchasing an item from the website. Ten users
were created in each environment to be used for the login and purchase process. During each test, a
user went to the home page and logged into the site. Then they clicked on the Lights category and
clicked on the first item in the results. They then added the item to their shopping cart and went to
checkout. In checkout, they filled out the fields for purchase and completed the purchase.

The load type was a step curve performed over one hour, with a gradual increase in the number of
users for the first 10 minutes, and then a sustained load for the following 50 minutes. The test started
with 5 users, increased by 5 users for 10 minutes and then held steady at 55 users for 50 minutes.

Costs and Benefits of .NET Application Migration to the Cloud v1.1 32

The test was distributed across four AWS regions with the following allocations and number of load
injectors, indicated in Table 11:

Table 11. Item Purchase Test Specifications

Each environment was subjected to the same test with the same parameters. Table 12 shows the
results of the Item Purchase test against all three environments.

Costs and Benefits of .NET Application Migration to the Cloud v1.1 33

Table 12. Item Purchase Test Results

In this case, the Azure environment was able to process significantly more sessions, while the AWS
environment had a lower average session duration. The on-premises environment appears to produce
inconsistent performance with a much higher standard deviation.

Test Summary

Overall the performance of each environment was consistent across all three environments. Azure was
able to process the most sessions in each test, while AWS had the lowest average duration. The Azure
environment also produced the most consistent performance, with the lowest standard deviation for
each test. In each test, the on-premises environment lagged behind.

Although the AWS and Azure environments were configured to autoscale the number of web servers,
an autoscaling event never occurred. The four instances were able to handle the load generated by
the tests without ever surpassing the 70% CPU utilization mark. In fact, the CPU utilization of all the
web servers in every environment never exceeded 40%.

Costs and Benefits of .NET Application Migration to the Cloud v1.1 34

If the tests represent a normal load on the Parts Unlimited application, it would be safe to reduce the
number of web server instances to three or possibly two. With the dynamic scaling features of Azure
and AWS, it would be trivial to scale out as load increased and scale back when load dropped below a
certain threshold.

TCO Details

The cost of each environment was calculated using the AWS TCO calculator, AWS Pricing Calculator,
and Azure Pricing Calculator. Reserved capacity was used whenever possible, for the maximum
duration available (one or three years). The total cost is an estimate of running the application for three
years.

The cost calculations are focused solely on the costs of running the applications, and not on all of the
supporting services like monitoring, data protection, and security. Migrating a single application from
on-premises to the cloud would not have a significant impact on the cost structure of the remaining
supporting services. Additionally, the supporting services in each cloud often come free of charge or
bundled as part of the service.

On-Premises Costs

The benchmark testing was performed with four web servers running, yielding the costs in Table 13.

Costs and Benefits of .NET Application Migration to the Cloud v1.1 35

Table 13. On-Premises Estimated Costs

Microsoft Azure Costs

The benchmark testing was performed with App Service running the PremiumV3 SKU, at the P1 size,
with four instances and Azure SQL Database running the Gen5 server type with 4 vCPUs. The resulting
cost breakout is shown in Table 14.

Costs and Benefits of .NET Application Migration to the Cloud v1.1 36

Table 14. Microsoft Azure Estimated Costs

Note that the Azure SQL Database cost shown here does not reflect the Azure Hybrid Benefit (AHB)
licensing options that allow existing SQL licenses to be used on Microsoft Azure. In a migration
scenario, an organization could bring their existing SQL License to Azure and save on the cost of
paying for the SQL license, reducing the Azure SQL Database cost to $7,200 for the three-year time
period. Both the Azure SQL Database and App Service Plan are using reserved capacity to further
reduce the cost of the environment.

This cost structure, which is reflected in the calculations used in Table 2 and Table 3, yields significant
savings. For instance, the estimated cost to migrate to Azure without AHB was calculated to be
$41,888, compared to $31,088 with Azure AHB, as shown in Table 2.

The cost per month for an Azure migration likewise changes significantly with AHB applied. A 4 VM
deployment that was shown to cost $864 for Azure with AHB in Table 3 would cost $1,164 without
AHB. The $582 cost of a 2 VM Azure deployment with Azure AHB goes up to $882 without AHB.

The impact on sessions costs is comparable. At 4 VM, the cost goes from $0.79 per 10K sessions with
Azure using AHB, to $1.06 per 10K sessions with Azure without AHB. At 2 VM, those figures are $0.53

Costs and Benefits of .NET Application Migration to the Cloud v1.1 37

and $0.80, respectively.

AWS Costs

The benchmark testing was performed with EC2 running four instances at the m5d.large size and an
RDS instance using the db.m5.xlarge size. The Application Load Balancer is not bundled with Elastic
Beanstalk and neither is network traffic—both are broken out as separate line items. Table 15 shows
the rundown of estimated costs.

Table 15. AWS Estimated Costs

Costs and Benefits of .NET Application Migration to the Cloud v1.1 38

8. About Ned Bellavance

Ned Bellavance
Ned is an experienced IT practitioner with experience in the
field. Ned has worked with Fortune 500 companies and
SMBs across multiple verticals, developing and deploying
both on-premises and cloud-based architectures. Ned
has authored two books on the Azure Kubernetes Service
and HashiCorp Terraform and holds several industry
certifications from vendors including but not limited to
Microsoft, VMware, AWS and Citrix.

Costs and Benefits of .NET Application Migration to the Cloud v1.1 39

https://gigaom.com/analyst/bellavance-ned/

9. About GigaOm

GigaOm provides technical, operational, and business advice for IT’s strategic digital enterprise and
business initiatives. Enterprise business leaders, CIOs, and technology organizations partner with
GigaOm for practical, actionable, strategic, and visionary advice for modernizing and transforming their
business. GigaOm’s advice empowers enterprises to successfully compete in an increasingly
complicated business atmosphere that requires a solid understanding of constantly changing customer
demands.

GigaOm works directly with enterprises both inside and outside of the IT organization to apply proven
research and methodologies designed to avoid pitfalls and roadblocks while balancing risk and
innovation. Research methodologies include but are not limited to adoption and benchmarking
surveys, use cases, interviews, ROI/TCO, market landscapes, strategic trends, and technical
benchmarks. Our analysts possess 20+ years of experience advising a spectrum of clients from early
adopters to mainstream enterprises.

GigaOm’s perspective is that of the unbiased enterprise practitioner. Through this perspective, GigaOm
connects with engaged and loyal subscribers on a deep and meaningful level.

Costs and Benefits of .NET Application Migration to the Cloud v1.1 40

10. Copyright

© Knowingly, Inc. 2020 "Costs and Benefits of .NET Application Migration to the Cloud" is a trademark
of Knowingly, Inc.. For permission to reproduce this report, please contact sales@gigaom.com.

Costs and Benefits of .NET Application Migration to the Cloud v1.1 41

https://www.knowingly.com/
https://www.knowingly.com/
mailto:sales@gigaom.com

	Costs and Benefits of .NET Application Migration to the Cloud v1.1
	An Updated Guide to Cloud-Based Modernization of .NET Applications

	Costs and Benefits of .NET Application Migration to the Cloud
	An Updated Guide to Cloud-Based Modernization of .NET Applications
	Table of Contents
	1. Summary
	2. What’s Driving Application Modernization?
	3. Options and Benefits for Application Modernization
	Increased Productivity
	Enhanced Features
	Access to Innovation

	4. Comparing PaaS Offerings For Migration
	5. Field Test Findings, Migration Benefits and TCO Analysis
	TCO Analysis
	Price/Performance Considerations

	6. Conclusion
	7. Appendix
	Amazon Web Services
	Testing Configuration
	Testing Results
	TCO Details
	Microsoft Azure Costs

	8. About Ned Bellavance
	9. About GigaOm
	10. Copyright

